Get started with Red Hat OpenShift Virtualization ## Contents #### Introduction #### Get started with common use cases - **Task 1:** Provision virtual machines by instance type - **Task 2:** Provision virtual machines using templates - **Task 3:** Update virtual machine configurations - **Task 4:** Create and manage snapshots - **Task 5:** Live migrate virtual machines - **Task 6:** Administer storage resources - **Task 7:** Configure network nodes - Task 8: Connect virtual machines to networks - **Task 9:** Set up secondary networks - Task 10: Back up and recover virtual machines - Task 11: Update and upgrade a cluster - Task 12: Add new physical hosts - Task 13: Observe and manage virtual machines #### Resources and information ## Introduction ## Migrate and manage your virtual machines and containers on a single, unified platform. Virtualization platforms are core components of modern IT environments. By abstracting hardware resources, virtualization technologies can increase scalability and flexibility across hybrid, multicloud, and edge environments. With capabilities that speed and simplify virtual machine (VM) provisioning and management, virtualization platforms can help you optimize infrastructure, streamline operations, and adopt new technologies and services. With Red Hat® OpenShift® Virtualization, you can deploy and manage VMs at scale and with security across hybrid, multicloud, and edge environments. As the foundation for OpenShift Virtualization, Red Hat OpenShift lets you run both VMs and containers on a single, unified, enterprise-ready application platform. Included in Red Hat Enterprise Linux® CoreOS, the Kernel-based Virtual Machine (KVM) is the underlying security-focused, high-performance, open source hypervisor. ## Maximize existing investments while adopting cloud-native innovation OpenShift Virtualization can help you maximize your existing virtualization investments while taking advantage of cloud-native architectures, streamlined operations, and new development approaches. Read 15 reasons to adopt Red Hat OpenShift Virtualization. OpenShift Virtualization provides the capabilities needed to manage complete VMs lifecycles. - Create and manage both Linux and Microsoft Windows VMs from a single interface. - Import and clone existing VMs from other virtualization platforms. - Live migrate VMs using configurable policies, metrics, and traffic encryption. - Manage attached network interface controllers and storage disks. - Back up VMs on demand or on fixed schedules, manage saved images, and restore workloads quickly. - Administer VMs on physical servers in private datacenters and public cloud environments. - Provision and manage VMs with graphical web consoles or command line interfaces (CLIs). - Automate many common virtualization tasks with advanced capabilities in Red Hat Ansible® Automation Platform and modern practices like GitOps and Infrastructure-as-Code (IaC). #### Red Hat OpenShift key concepts This e-book provides guidance on using OpenShift Virtualization. It's important to understand a few key concepts before getting started: - Nodes are physical servers in private datacenters or public cloud environments. - Clusters are sets of nodes that are managed together through a control plane. - Namespaces provide a mechanism for isolating groups of resources within a cluster, allowing you to divide resources between multiple users. #### What you will learn in this e-book This e-book describes many of the common tasks that you can perform with OpenShift Virtualization. We provide step-by-step guidance for using OpenShift Virtualization to provision, configure, manage, and migrate VMs and related resources. # Get started with common use cases The following sections describe how to accomplish common tasks using OpenShift Virtualization. Each section includes step-by-step instructions and screenshots of the unified interface to help you get started. #### Streamline tasks and workflows with automation You can automate the uses cases described in this e-book with **Ansible Automation Platform**. Start common virtualization tasks as part of scheduled activities, initiate them via events or IT service management (ITSM) requests, or include them as part of larger orchestrated service delivery workflows. And with precomposed automation content available in **Red Hat Ansible Certified Content** collections, you can start automating your virtualization tasks and workflows in less time. #### Task 1: ## Provision virtual machines by instance type In some cases, users need more customization options when provisioning VMs. With instance types, you can offer a predefined selection of operating system images, workload types, and hardware requirements. Users can self-provision VMs from this selection based on their workload requirements, including processor, memory, and operating system. Follow these steps to provision VMs using instance types in the web console. - 1. Navigate to *Virtualization > Catalog* in the left menu bar. - 2. Select the *InstanceTypes* tab. 3. Click an *InstanceType* tile and select the appropriate resource size for your workload, then click *Create VirtualMachine* at the bottom of the frame. **4.** Navigate to *Virtualization > VirtualMachines* in the left menu bar to view the status of the newly provisioned VM. #### Task 2: ## Provision virtual machines using templates Templates are a simple way to provision VMs. OpenShift Virtualization includes predefined templates for many common operating systems and hardware configurations. For example, templates are included for both Linux and Microsoft Windows VMs. You can also define and customize templates based on your organization's workloads and infrastructure. And in internet-connected clusters, you can automatically download default base images for VMs to simplify template management. OpenShift Virtualization includes capabilities to help you manage provisioning across your organization. Role-based access control (RBAC) mechanisms regulate access to templates, allowing users to self-provision VMs from curated catalogs and in compliance with corporate policies. By defining validation rules in templates, you can allow users to customize VMs within defined limits. And hooks that connect OpenShift Virtualization to external tools—including Ansible Automation Platform and ServiceNow—let you create advanced workflows to streamline VM provisioning. Follow these steps to provision VMs using default or customized templates in the web console. #### Provision a virtual machine using default templates - 1. Navigate to *Virtualization > Catalog* in the left menu bar. - 2. Click a template tile to view the VM details. 3. Click Quick create VirtualMachine to create a VM based on the default template settings. **4.** Navigate to *Virtualization > VirtualMachines* in the left menu bar to view the status of the newly provisioned VM. #### Provision a virtual machine using customized templates - 1. Navigate to *Virtualization > Catalog* in the left menu bar. - 2. Click a template tile to view the VM details. 3. Click Customize VirtualMachine to edit the VM settings. **4.** Expand the **Storage** and **Optional parameters** sections to modify related VM settings, then click **Next** at the bottom of the frame. Customize VM settings in the Overview, Scheduling, Environment, Network interfaces, Disks, Scripts, and Metadata tabs and click Create VirtualMachine. For example, you can customize the number of processor cores and amount of memory, change connected networks, add additional disks, and include configuration scripts. **6.** Navigate to *Virtualization > VirtualMachines* in the left menu bar to view the status of the newly provisioned VM. #### Task 3: ## Update virtual machine configurations As workload demands change, you may need to update the configurations of running VMs. You can change a selection of configuration options using the OpenShift Virtualization web console. Follow these steps to reconfigure existing VMs in the web console. - 1. Navigate to *Virtualization > VirtualMachines* in the left menu bar. - 2. Select a VM to view the VirtualMachine details page. Select the Configuration tab and edit the VM settings in the Scheduling, Environment, Network interfaces, Disks, and Scripts subtabs #### Task 4: ## Create and manage snapshots Snapshots capture VM state and data at a specific point in time. If you encounter an issue when configuring or updating your infrastructure, you can use snapshots to restore VMs to a known state. And in the event of a security incident, snapshots let you preserve VMs state for further investigation. OpenShift Virtualization contains features that simplify snapshot management across your environment: - ► Create new snapshots. - ► Create copies of VMs from snapshots. - List all snapshots attached to a specific VM. - ▶ Restore VMs from snapshots. - Delete existing snapshots. OpenShift Virtualization lets you create snapshots of both running and stopped VMs. If a VM is running, OpenShift Virtualization waits for data to be written to disk before taking the snapshot. The platform uses mechanisms in the backing storage to snapshot VM data for efficient operation. Follow these steps to create and restore VM snapshots in the web console. #### **Create a virtual machine snapshot** - 1. Navigate to *Virtualization > VirtualMachines* in the left menu bar. - 2. Select a virtual machine to view the *VirtualMachine* details page. 3. Select the **Snapshots** tab and click **Take Snapshot**. 4. Enter the snapshot name in the *Name* field and click *Save* at the bottom of the frame. 5. Select the **Snapshots** tab to view the snapshot status. #### Restore a virtual machine snapshot - 1. Navigate to *Virtualization > VirtualMachines* in the left menu bar. - 2. Select a VM to view the VirtualMachine details page. 3. If the VM is running, click the *Actions* menu and select *Stop*. 4. Select the **Snapshots** tab to view a list of snapshots for this VM. 5. Select *Restore* from the options menu for the desired snapshot, then click *Restore* in the pop-up menu. - 6. Select the **Snapshots** tab to view the snapshot status. - 7. Click the Actions menu and select Start to restart the VM. #### Task 5: ## Live migrate virtual machines Live migration lets you move VMs to different nodes in the cluster without interrupting running workloads. OpenShift Virtualization contains features that speed and simplify VM migrations across your environment: - ▶ Initiate and cancel live migrations. - ► Configure live migration settings, including limits and timeouts. - ► Customize migration configurations with live migration policies. - ▶ Monitor the progress of all live migrations. - ▶ View and analyze VM migration metrics. Follow these steps to live migrate running VMs in the web console. 1. Navigate to *Virtualization > VirtualMachines* in the left menu bar. 2. Select *Migrate* from the options menu for the desired VM. 3. Navigate to *Virtualization > VirtualMachines* in the left menu bar to view the status of the migrated VM. #### Migrate virtual machines between clusters Included with Red Hat OpenShift, the migration toolkit for virtualization lets you migrate VMs between clusters—and to OpenShift Virtualization from other platforms—at scale. Define a migration plan through the web console or CLI, and the toolkit manages the entire migration, including data copy and VM management tasks. Warm migration capabilities help minimize potential downtime when migrating VMs between clusters. Read the blog to learn more about this toolkit. #### Task 6: ## Administer storage resources OpenShift Virtualization uses Kubernetes objects—including storage classes, persistent volume claims (PVCs), and persistent volumes (PVs)—to manage storage resources for VMs. Storage classes describe and classify available storage resources. Cluster and storage administrators create **StorageClass** objects and include information like quality-of-service levels, backup policies, and organization-specific guidelines. Users can request resources without detailed knowledge of underlying storage volumes via **StorageClass** object names. Navigate to Storage > Storage Classes in the left menu bar to view all available Storage Classes for your cluster. PVCs are requests for storage resources of specific classes, capacities, and access modes. Using the Container Storage Interface (CSI), storage devices receive PVCs, allocate storage as PVs, and bind the PVs to the PVCs. VMs are assigned PVCs, providing access to PVs and underlying storage devices. With OpenShift Virtualization, storage layers manage capacity and migrate data between storage pools. Storage administrators do not need to perform live storage migration activities within storage classes. Follow these steps to create a persistent volume claim in the web console. - 1. Navigate to **Storage** > **PersistentVolumeClaims** in the left menu bar. - 2. Click Create PersistentVolumeClaim and select With Form. 3. Customize the PVC settings and click *Create* to provision the PVC. **4.** Navigate to **Storage > PersistentVolumeClaims** in the left menu bar to view the status of all PVCs and bound PVs. #### Migrate data between storage classes Included with Red Hat OpenShift, the migration toolkit for containers lets you migrate data between storage classes. Define a migration plan and the toolkit performs a warm migration, including copying data and managing persistent volume claims. Learn more about this toolkit. #### Task 7: ## **Configure network nodes** OpenShift Virtualization lets you define state-driven network configurations across entire clusters. Describe the requested network configuration—including interface types, domain name system (DNS), and routing—for nodes in the cluster using a node network configuration policy. Using the **Kubernetes NMState Operator**, OpenShift Virtualization monitors and updates each node's network configuration to ensure compliance with the policy. Follow these steps to create a node network configuration policy in the web console. - 1. Navigate to Networking > NodeNetworkConfigurationPolicy in the left menu bar. - 2. Click Create and select From Form. 3. Enter the policy name in the *Policy name* field, and optionally add a description in the *Description* field. By default, configurations are applied to all nodes. Use the Node Selector check box at the top of the form to apply policies to a subset of nodes. **4.** Define policy interfaces, including the required *Interface name*, *Network state*, and *Type* fields. Set optional fields as necessary. Click *Create* to complete policy creation. #### Task 8: ### **Connect virtual machines to networks** Network attachment definitions let you connect VMs to virtual local area networks (VLANs) across your cluster. Because network attachment definitions are managed namespaces, you can control the VMs connected to any VLAN. Using namespaces, you can create a common network that all users can access while prohibiting users from placing VMs on unauthorized networks. Follow these steps to connect a VM to a VLAN in the web console. - 1. Navigate to **Networking > NetworkAttachmentDefinitions** in the left menu bar. - 2. Click Create Network Attachment Definition. - 3. Enter a unique name and optional description for the network attachment definition. Select CNV Linux bridge from the Network Type list and enter the bridge name in the Bridge name field. Set optional fields as necessary and click Create at the bottom of the frame to create the network attachment definition. **4.** Provision a virtual machine (Task 1). Under the **Network interfaces** tab, select the newly created network attachment definition. #### Task 9: ## Set up secondary networks OpenShift Virtualization also lets you connect VMs to Open Virtual Network (OVN)-Kubernetes secondary networks. Support for *layer 2* topologies allows you to connect VMs on different nodes via a cluster-wide logical switch, without configuring any additional physical networking infrastructure. Using a *localnet* topology, you can connect secondary networks to physical underlays to support east-west cluster traffic and access to services outside the cluster. The process for setting up and connecting VMs to a secondary network largely follows the same steps as configuring a VLAN (Task 8). Follow these steps to set up and connect VMs to a secondary network in the web console. - 1. Navigate to Networking > NetworkAttachmentDefinitions in the left menu bar. - 2. Click Create Network Attachment Definition. - 3. Enter a unique name and optional description for the network attachment definition. - **4.** Select **OVN Kubernetes L2 overlay network** from the **Network Type** list and click **Create** to create the network attachment definition. - 5. Connect VMs to the newly created network by updating their configurations (Task 3). Under the **Network interfaces** tab, select the newly created network attachment definition. #### **Task 10:** ## Back up and recover virtual machines OpenShift Virtualization supports data protection operations—including on-demand backup, scheduled backup, and restore. With these operations, you can save VM state and data to storage resources in a private datacenter or public cloud environment outside of your cluster. In the event of a failure or scheduled maintenance, you can quickly restore your entire cluster. Follow these steps to back up and restore VMs in the web console. #### **Configure OpenShift APIs for Data Protection** Part of Red Hat OpenShift, OpenShift APIs for Data Protection (OADP) is an **operator** that offers comprehensive disaster recovery protection. Created and supported by Red Hat, OADP backs up and restores VMs—including any PVCs and metadata objects like VM definitions—and Kubernetes **ConfigMaps** and **Secrets**. **DataProtectionApplication** custom resources define OADP configurations, allowing you to specify backup and snapshot locations along with their secrets using YAML. Here is an example OADP configuration: ``` spec: backupLocations: - velero config: profile: default region: localstorage s3ForcePathStyle: 'true' s3Url: 'http://s3.openshift-storage.svc' credential: key: cloud name: cloud-credentials default: true objectStorage: bucket: backups-0bc357d1-31db-4453-b54e-9c4bde5a98c8 prefix: velero provider: aws ``` ``` configuration: velero: defaultPlugins: - csi - openshift - aws - kubevirt featureFlags: - EnableCSI ``` #### **Explore an ecosystem of solutions** Our certified partner ecosystem includes many third-party products for **data storage**, backup, and restoration. Using the Red Hat OpenShift Operator Framework, OpenShift Virtualization lets you perform backup and recovery operations using many of these products directly from the web console. Find partner solutions in the Red Hat Ecosystem Catalog. #### **Create a virtual machine backup** 1. Create a backup custom resource using YAML that defines the namespaces and VMs included in the back up. ``` apiVersion: velero.io/v1 kind: Backup metadata: name: backup-fedora02 labels: velero.io/storage-location: default namespace: openshift-adp spec: hooks: {} orLabelSelectors: - matchLabels: app: fedora02 - matchLabels: vm.kubevirt.io/name: fedora02 includedNamespaces: - vmexamples storageLocation: oadp-dpa-1 ttl: 720h0m0s ``` - 2. Navigate to Operators > Installed Operators in the left menu bar. - 3. Select OADP Operator from the list. 4. Select the *Backup* tab and click *Create Backup*. 5. Select YAML view, copy the backup custom resource into the window, and click Create. 6. Select the Backup tab of the OADP Operator to view the status of the backup operation. #### Restore a virtual machine from a backup 1. Create a backup custom resource using YAML that defines the backup and resources to restore. ``` apiVersion: velero.io/v1 kind: Restore metadata: name: restore-fedora02 namespace: openshift-adp spec: backupName: backup-fedora02 includedResources: [] excludedResources: - nodes - events - events.events.k8s.io - backups.velero.io - restores.velero.io restorePVs: true ``` - 2. Navigate to Operators > Installed Operators in the left menu bar. - 3. Select OADP Operator from the list. - 4. Select the **Restore** tab and click **Create Restore**. - 5. Select YAML view, copy the backup custom resource into the window, and click Create. - 6. Select the Restore tab of the OADP Operator to view the status of the restore operation. #### Task 11: ## Update and upgrade a cluster With OpenShift Virtualization, you can update an entire Red Hat OpenShift cluster with a single operation. Follow these steps to perform an upgrade of your cluster in the web console. - 1. Navigate to Administration > Cluster Settings in the left menu bar. - 2. Select the **Details** tab, and then click **Select a version**. 3. Choose a Red Hat OpenShift version in the Select new version menu, and click Update. #### Task 12: ### Add new physical hosts OpenShift Virtualization uses the **Bare Metal Operator** to perform cluster level capacity management. With this operator, you can manage physical hosts directly in the web console: - ▶ Provision bare-metal hosts to clusters with specific images. - ▶ Format host disk contents before provisioning or after deprovisioning. - ► Turn a host on or off. - ► Change firmware settings. - ▶ View host hardware details. Follow these steps to provision new physical hosts. Sample YAML code for steps 1 and 2 can be found in the Red Hat OpenShift documentation. - 1. Create a BareMetalHost custom resource using YAML that defines the new host. - 2. Create a Secret custom resource using YAML that defines the username and password of the new host. - 3. Create the bare-metal host object: - \$ oc create -f bmh.yaml - **4.** Verify that the provisioning state of the host is provisioned: - \$ oc get bmh -A - **5.** Get the list of pending certificate signing requests (CSRs): - \$ oc get csr - 6. Approve the CSR: - \$ oc adm certificate approve <csr_name> #### Task 13: ## Observe and manage virtual machines OpenShift Virtualization lets you observe and manage your VMs from a single console: - ► Get a comprehensive overview of your entire virtualization footprint. - ▶ Analyze VM resource use graphically over time. - ▶ Monitor streaming alerts. - Access the VM console directly. - ► Review snapshot history. - ► Check the status and condition of various resources, including VMs, DataVolumes, and snapshots. - ► Access the Guest log system. - ▶ View VM configurations as a web form or in YAML format. Follow these steps to observe and manage VMs in the web console. 1. In the top left corner, click the *Administrator* menu and select *Virtualization*. 2. View the complete virtualization footprint in the main window. **3.** Select the *Top consumers* tab to view the 5 VMs using the most resources across types—including central processing units (CPU), memory, and storage throughput. **4.** Navigate to *VirtualMachines* in the left menu bar to view details of individual VMs. Use the *Filter* menu to narrow the list by name, label, IP address, or VM status—including migrating, paused, provisioning, running, started, or stopped. 5. Select a VM to view details including status, creation time, operating system, and CPU, memory, storage, and network transfer utilization. **6.** Click the *Actions* menu to manage the VM. You can stop, restart, pause, clone, migrate, and take a snapshot of the selected VM. ## Resources and information Red Hat offers many resources to help you progress quickly on your virtualization and migration journey. #### **Try OpenShift Virtualization** Access a free trial of Red Hat OpenShift Container Platform, in the cloud, on your computer, or in your datacenter. #### Watch a demonstration video Check out a demo of some of the capabilities of OpenShift Virtualization and how it can work with your modernization strategy. #### Participate in a workshop Learn about OpenShift Virtualization from Red Hat experts in a half-day, in-person workshop and tailored, hands-on lab. #### Learn about disaster recovery See how to fail over a Microsoft Windows Server 2022 VM running on OpenShift Virtualization with a single click. #### See success in action Learn how the University of Gothenburg containerized its existing applications more easily with OpenShift Virtualization. #### **Read product documentation** Find documentation for OpenShift Virtualization, including release notes, installation guides, and operational information.