IMPRACTICAL

MAPPING MARS
WITH THE MARS ORBITER

The Mars Orbiter space probe has been
successfully injected into Martian orbit,
but all is not well. The orbit is highly ellip-

tical, and the project’s mapping objectives
require a low-altitude circular orbit. Fortunately,
there’s just enough propellant on board to correct
things, assuming the eggheads at Mission Control
have the patience and skill to pull it off!

In this chapter, you’ll design and build a game based on this scenario.
You’ll use pygame again (for an overview of pygame, see “A Slice of pygame” on
page 267), and you’ll do your part to advance STEM (science, technology,
engineering, and mathematics) education by making the game real enough
to teach players the fundamentals of orbital mechanics.

286

Although they share the same name, the Mars Orbiter space probe in the game be..

no direct relationship to the Mars Orbiter Mission launched by the Indian Spac.
Research Organization (ISRO) in 2014. The game probe is patterned after the
Mars Global Surveyor, launched by NASA in 1996.

Astrodynamics for Gamers

Chapter 14

Because you’ll want your game to be as realistic as possible, a quick review
of some of the basic science underlying spaceflight is in order. This will be
short, sweet, and tailored to game development and play.

The Law of Universal Gravity

The theory of gravity states that massive objects—Ilike stars and planets—
warp both space and time around them, similar to how a heavy bowling ball
placed on a mattress causes a depression that is sudden and sharp near th
ball but quickly levels off. This behavior is captured mathematically by Isaz
Newton’s law of universal gravitation:

ml*sz

F= 7

where Fis the force of gravity, m, is the mass of object 1, m, is the mass of
object 2, dis the distance between objects, and Gis the gravitational con-
stant (6.674 x 10" N - m”- kg ™).

Two objects pull on each other according to the product of their masses
divided by the square of the distance between them. So, gravity is much
stronger when objects are close together, like the deep bowing of the mat-
tress just beneath the bowling ball. To illustrate, a 220-pound (100 kg) man
would weigh over half a pound less on top of Mt. Everest than he would at
sea level, where he would be 8,848 m closer to the center of Earth. (This
assumes the mass of the planetis 5.98 x 10% kg and sea level is 6.37 x 10°m
from the center.)

Today, we generally think of gravity as a field—like the mattress in the
bowling ball analogy—rather than as Newton’s point of attraction. This
field is still defined with Newton’s law and results in acceleration, usually
expressed in m/secg.

According to Newton’s second law of motion, force is equal to mass x
acceleration. You can calculate the force exerted by object 1 (m,) on
object 2 (m,) by rewriting the gravitational equation as:

~{%m,

a= d2

where a = acceleration, G is the gravitational constant, m, is the mass of one
of the objects, and d is the distance between objects. The direction of force
is from object 2 toward the center of mass of object 1 (m,).

NOTE

The pull of very small objects on large ones is generally ignored.
For examPIe, the force exerted by a 1,000 kg satellite on Mars is about
1.6 x 107 times smaller than the force exerted by Mars on the satellite!
Thus, you can safely ignore the satellite’s mass in your simulation.

As a simplification in this project, distance is calculated from the center points of
objects. In real life, an orbiting satellite would experience subtle changes in gravita-
tional acceleration due to changes in a planet’s shape, topography, crustal density,
and so on. According to the Encyclopedia Britannica, these changes cause gravita-
tional acceleration at Earth’s surface to vary by about 0.5 percent.

Kepler’s Laws of Planetary Motion

In 1609, astronomer Johann Kepler discovered that planetary orbits are
ellipses, allowing him to explain and predict the motion of the planets.

He also found that a line segment drawn between the sun and an orbiting
planet sweeps out equal areas in equal time intervals. This idea, known as
Kepler’s second law of planetary motion, is demonstrated in Figure 14-1,
where a planet is shown at different points in its orbit.

Orbital
direction

Area A, = Area A,
(T,-T,inA) =(T,-T,inA)

1

Figure 14-1: Kepler's second law of planetary motion: orbital speed
increases as planets near the sun.

This law applies to all celestial bodies, and it means that an orbiting

object speeds up as it gets close to the body it is orbiting and slows down as
it travels farther away.

Mapping Mars with the Mars Orbiter 287

288

Chapter 14

Orbital Mechanics
Orbiting is basically free-falling forever. . el
You're falling into the core of a planet’s grav- |:> e
ity well—located at its literal core—but your Gravity @
tangential velocity is fast enough that you
keep missing the planet (see Figure 14-2).
As long as you balance your momentum with
the force of gravity, the orbit will never end.
Some counterintuitive things can hap-
pen when you orbit a planet in the vacuum

Orbit

Figure 14-2: Orbit is achieved
when a spacecraft’s velocity

of space. With no friction or wind resistance, keeps it “free-falling” around
spacecraft can behave in unexpected ways. a celestial body.

Flying Backward

If you've ever watched an episode

of Star Trek, you’ve probably noticed * Orbital
how the orbiting Enterprise seems direction

to steer its way around planets, like

a car going around a track. This is

certainly possible to do—and defi- 4*

nitely looks cool—but it requires

the expenditure of precious fuel.

If there’s no need to continuously

point a specific part of a spacecraft

at a planet, then the nose of the

spacecraft will always point in the

same direction throughout its orbit. Figure 14-3: Spacecraft retain the same

As a result, there will be times in attitude in orbit unless forced to do

each orbit when it appears to fly otherwise.

backward (see Figure 14-3). ,
You can blame this on Newton and his law of inertia, which states that

an object at rest stays at rest and an object in motion stays in motion with

the same speed and in the same direction unless acted upon by an unbal-

anced force.

-

Raising and Lowering Orbits

Brakes don’t work in space, there’s no friction, and inertia takes itself very
seriously. To lower a spacecraft’s orbit, you have to fire thrusters to reduce
its velocity so that it falls farther into a planet’s gravity well. To accomplish
this, you have to retrograde your spacecraft so that its nose faces away from
the present velocity vector—a fancy way of saying you have to fly tail-first.
This assumes, of course, that the main thrusters are at the back of the

spacecraft. Conversely, if you want to raise the orbit, you have to prograde
‘the spacecraft, so that its nose will be pointed in the direction you are trav-
eling. These two concepts are shown in Figure 14-4. :

' Prograde

Orbital
direction

Orbital

direction

-

etrograde

Figure 14-4: Prograde and retrograde are defined
by the orientation of a spacecraft’s nose with
respect to the direction it is traveling around the
body it is orbiting.

Taking the Inside Track

If you're chasing another spacecraft in orbit, do you speed up or slow down
to catch it? According to Kepler’s second law, you slow down. This will lower
your orbit, resulting in a faster orbital velocity. Just as in horse racing, you
want to take the inside track.

On the left side of Figure 14-5, two space shuttles are side by side in
essentially the same orbit, traveling at the same velocity.

Prograde* *Retrogrude ‘
V=3 km/ sec

V=2 km/secv

Figure 14-5: The orbital paradox: slow down to speed up!

Vz 4 km/sec

Orbital direction

The shuttle closest to the planet rotates 180 degrees and does a retro-
grade thrust to slow its immediate velocity. The outer shuttle performs a
prograde thrust that increases its immediate velocity. They simultaneously
stop thrusting, and the inner shuttle drops to a lower orbit while the outer
shuttle transfers to a higher orbit. After an hour or so, the inner shuttle is
traveling much faster, due to its closer proximity to the planet, and is well
on its way to catch and lap the outer shuttle.

Mapping Mars with the Mars Orbiter 289

290

Chapter 14

Circularizing an Elliptical Orbit

You can make highly elliptical orbits circular by applying engine impulses
at either the apoapsis or periapsis, depending on the situation. The apoapsis
(called the apogeeif the object is orbiting Earth) is the highest point in an
elliptical orbit—the point where the object is the farthest away from the
body it is orbiting (Figure 14-6). The periapsis (perigee if the object’s orbit-
ing Earth) is the point lowest in an orbit.

Periapsis

Apoapsis

Figure 14-6: Location of the apoapsis and periapsis in an elliptical orbit

To raise the periapsis, the spacecraft performs a prograde thrust at the
apoapsis (see the left-hand side of Figure 14-7). To lower the orbit while cir-
cularizing, the spacecraft must perform a retrograde thrust at the periapsis
(see the right-hand side of Figure 14-7).

A somewhat counterintuitive part of this maneuver is that the initial
orbit—that’s the orbit that would have been—and the final, or actual, orbit
will coincide at the point the engine impulse was applied.

Prograde thrust Orbital
at apoapsis sty
.=~ direction ">~ -
rot ~. Initial
o \\orbi

Initial \
orbit

1
1
1
1
!

1

l

‘~.<-—’

Orbital

direction Retrograde thrust
at periapsis

Figure 14-7: Circularizing and raising an orbit at apoapsis (left] and circularizing and
lowering an orbit at periapsis (right]

S A

Raising and Lowering Orbits with the Hohmann Transfer

A Hohmann transfer orbit
uses an elliptical orbit to
switch between two circular
orbits in the same plane
(see Figure 14-8). The
orbit can be either raised
or lowered. The maneu-
ver is relatively slow, but it
consumes the least possible
amount of fuel.

To change to an orbit
with both a different peri-
apsis and apoapsis, a space-
craft requires two engine
impulses. One impulse
moves the spacecraft onto
the transfer orbit, and
another moves it onto the

Initial

Orbital
direction

Retrograde thrust 2

Transfer
ellipse

w Retrograde thrust 1

Figure 14-8: Transferring to a lower circular orbit
with the Hohmann transfer technique

final, destination orbit. When raising an orbit, the spacecraft applies the
change in velocity in the direction of motion, and when lowering an orbit,
it applies the change of velocity opposite to the direction of motion. The
velocity changes have to occur at opposite sides of the orbit, as shown in
Figure 14-8. Without the second thrust, the orbits will still intersect at the
point of the first thrust, as shown on the right side of Figure 14-7.

Raising and Lowering Orbits with the One-Tangent Burn

The One-Tangent Burn technique transfers a spacecraft between orbits faster
but less efficiently than a Hohmann transfer. A burn is just another term for

thrust or impulse. As with
the Hohmann transfer,
orbits can be either raised
or lowered.

The maneuver requires
two engine impulses, the
first tangential to the orbit
and the second nontangen-
tial (see Figure 14-9). If the
initial orbit is circular, as in
the figure, then all points
along it represent both
the apoapsis and the peri-
apsis, and the spacecraft
can apply its first burn at
any time.

Final

Orbital
direction

Transfer
ellipse

Second burn

First l';um ' .

Figure 14-9: Transferring to a higher circular orbit
with the One-Tangent Burn

Mapping Mars with the Mars Orbiter 291

292

Chapter 14

Just as with the Hohmann transfer, a prograde burn raises the orbit,
and a retrograde burn lowers it. If the orbit is elliptical, the first burn would
be a prograde burn at the apoapsis to raise the orbit, or a retrograde burn
at periapsis to lower it.

Executing a Spiral Orbit with the Spiral Transfer

A spiral transfer uses a continuous, low-thrust burn to change the size of
an orbit. In gameplay, you can simulate this using retrograde or prograde
burns that are short and regularly spaced, like those shown in Figure 14-10.

Orbital
direction

Figure 14-10: Executing a spiral orbit using short
retrograde burns at regular intervals

To lower an orbit, all the burns must be retrograde; to raise an orbit,
the spacecraft uses prograde burns.

Executing Synchronous Orbits

In a synchronous orbit, a spacecraft takes the same amount of time to make
one revolution around a planet as it takes the planet to make one rotation
around its axis. If a synchronous orbit is parallel to the equator, with no
orbital inclination, it is a stationary orbit; to an observer on the orbited bod
the satellite appears motionless in a fixed position in the sky. Communica-
tions satellites commonly use geostationary orbits, which have an altitude of
99,936 miles around Earth. A similar orbit would be called aerostationary
around Mars and selenostationary around the moon.

Project #22: The Mars Orbiter Game

In real life, a series of equations is used to precisely execute orbital maneu-
vers. In gameplay, you'll use your intuition, patience, and reflexes! You’ll
also need to fly by instruments to a certain extent, using mainly the space-
craft’s altitude readout and a measure of the orbit’s circularity.

THE OBJECTIVE

Use pyganme to build an arcade game that teaches the fundamentals of orbital mechanics.
The game’s goal is to nudge a satellite into a circular mapping orbit without running out
of fuel or burning up in the atmosphere.

The Strategy

Start the design phase with a game sketch, as you did in Chapter 13. This

sketch should capture all of the salient points of the game, like how it will
look, how it will sound, how things will move, and how the game will com-
municate with the player (Figure 14-11).

(_’_' “Gauges” display pertinent info at top }—j
Velocity Altitude Fuel Eccentricity

. . . correct fo circular mapping orbit without running
K’ out of fuel or burning up in the atmosphere . . .

Intro text shown at Satellite orbital direction
startup for 15 secs \ chosen at random

Orbital path recorded]

& allite dish Permanent legend for key
Permanent reminder of win always controls at bottom right
conditions at bottom left points I
¥ toward Mars Right arrow . . .
Altitude 69-120 miles St et Up arrow . . .

Down arrow . . .
Clear path . . .

Orbital deviation < 0.05
Avoid top atmosphere at 68 miles

Thruster hiss

Figure 14-11: Sketch of the main gameplay of the Mars Orbiter game

Mapping Mars with the Mars Orbiter 293

The sketch in Figure 14-11 describes the main gameplay. You'll need a
separate sketch to describe the win-lose conditions. For the main gameplay,
the key points are:

e The viewpoint is Mission Control. The game screen should resemble
a monitor at Mission Control from which the player can operate the
errant space probe.

e Mars is at front and center. Everybody loves the Red Planet, so it will
occupy the center of the jet-black screen.

e Mars is animated. The Martian globe will slowly rotate around its axis
and cast a shadow. The satellite will dim appreciably when it passes
through this shadow.

e The satellite’s initial orbit is chosen at random. The satellite will
appear at startup with a randomized—but constrained—orientation
and velocity. On rare occasions, this may result in an instant game loss.
That's still better than real missions, which fail 47 percent of the time!

e There’s no need to prograde or retrograde the satellite. Constantly
rotating the space probe before firing its thrusters greatly diminishes
gameplay. Assume that attitudinal thrusters are arrayed around the
fuselage and use the arrow keys to choose which thrusters to fire.

 Firing thrusters causes an audible hiss. Despite the fact that there’s no
sound in space, give the player the satisfaction of hearing a nice hiss
whenever they fire the thrusters.

o The satellite dish always points toward Mars. The satellite will slowly
and automatically rotate so that its remote-sensing dish is always aimed
at Mars.

e The satellite’s orbital path is visible. A thin white line will trail out
from behind the satellite and persist until the player clears it by press-
ing the space bar.

e The data readouts are placed at the top of the screen. You will display ‘
information useful for gameplay in boxes at the top of the window. Key
data are the space probe’s velocity, altitude, fuel, and orbital eccentric-
ity (a measure of the orbit’s circularity).

e A short introduction is shown at startup. Text introducing the game
will appear at the center of the screen when the game starts and stay up
for about 15 seconds. The text will not disrupt gameplay, so the player -
can start manipulating the satellite immediately.

¢ Win conditions and key controls are shown in permanent legends.
Critical information, like mission objectives and control keys, will be
displayed permanently in the lower-left and -right corners of the screen.

The game sketch in Figure 14-12 describes what happens in success and
failure cases. The player needs a reward when they win and an interesting :
outcome when they lose.

294 Chopter 14

Velocity Altitude Fuel Eccentricity

/_7<

zv:‘: e Fuel fail causes
permits mapping satellite to fly
off screen
Mappable Mars has
color overlay for wet
s b Low altitude fail Left Arrow . . .
Satellite stops on Right Arrow . . .
Altitude 60~120 miles Mars & turns red Up Arrow . . .
Orbital Deviation < 0.05 Down Arrow . . .
Avoid top atmosphere at 68 miles Clear Path . . .

Figure 14-12: Game sketch of winning versus losing outcomes in the Mars
Orbiter game

For winning and losing outcomes, the key points are:

¢ Change the satellite image for crash and burn. If the satellite’s alti-
tude drops below 68 miles, it burns up in the atmosphere. The moving
satellite image will be replaced with a glowing red version that sticks
to the side of Mars; this is similar to something you might see on a real
Mission Control display.

¢ The satellite is lost in space if it runs out of fuel. Although unrealistic,
have the satellite fly off the screen and into the depths of space if it
runs out of fuel. This really rubs the player’s nose in it!

* Win conditions unlock a prize. If the satellite achieves a circular orbit
within the target altitude range, new text will urge the player to press
the M key.

¢ Pressing M changes the Mars image. When the M key is unlocked,
pressing it causes the Mars image to change to a rainbow image where
cool colors represent areas of high soil moisture and warm colors repre-
sent drier areas.

For gameplay, the size of the satellite and its orbital speed won’t be
realistic, but the overall behavior will be correct. You should be able to cor-
rectly execute all of the orbital maneuvers described in “Astrodynamics for
Gamers” on page 286.

Mapping Mars with the Mars Orbiter 295

296

Game Assets

Chapter 14

The assets you'll need for the Mars Orbiter game are two satellite images,
two planet images, and a sound file. You can prepare these together at the

start of the process or build them when you need them. The latter approach =

lets you take episodic breaks from coding, which some people prefer.

Finding good, copyright-free graphics and sound files can be a chal-
lenge. You can find suitable assets online—either for free or for a fee—but
it's best to make your own whenever possible. This lets you avoid any legal
issues down the road.

The sprites (2D icons or images) I used for this project are shown in
Figure 14-13. You need a satellite, a red “burned” version of the satellite, a
view of Mars with a polar cap centered, and the same view with a colorful
overlay that will represent mapped soil-moisture gradations. I found the sat-
ellite sprite at the free icon site AHA-SOFT (http://www.aha-soft.com/) and
then copied and recolored it to make the crashed version. Both of the Mars
sprites are NASA images modified for the game.

Figure 14-13: The satellite, crashed satellite, Mars, and Mars overlay images
used as game sprites

I made a sound file for when the satellite is firing its thrusters using the &

white noise generator in the open source program Audacity. You can down-
load a free copy of Audacity at https://www.audacityteam.org/. 1 saved the file
in Ogg Vorbis format, an open source standard audio compression format
that is free and works well with Python and pygame. You can use other for-
mats, like MP3 and WAV, with pygame, but some have documented problems
or have proprietary components that can raise legal issues if you try to com-
mercialize your game.

You can download these files from this book’s website at https://www
.nostarch.com/impracticalpython/ as satellite.png, satellite_crash_40x33.png,
mars.png, mars_water.png, and thrust_audio.ogg. Download them, preserving
the filenames, into the same folder as the code.

:

8

The Code

mars_orbiter.py,
part 1

o

Figure 14-14 is an example of the final game screen you’ll be building. You
can refer back to this figure to get an idea of what the code is doing.

‘ @ Mars Orbiter T X

"

Orbital Ecce
Avoid top of a

Figure 14-14: Example startup game screen for the final version of mars_orbiter.py

You can download the complete program (mars_orbiter.py) at https://
www.nostarch.com/impracticalpython/.

Importing and Building a Color Table

Listing 14-1 imports the required modules and builds a color table.

import os

import math

import random
import pygame as pg

WHITE = (255, 255, 255)
BLACK = (0, 0, 0)

RED = (255, 0, 0)

GREEN = (0, 255, 0)

LT BLUE = (173, 216, 230)

Listing 14-1: Imports modules and builds a color table

Mapping Mars with the Mars Orbiter 297

First, import the operating system, designated by os @. The game will
launch in full-screen mode, but the player will have the option of escaping
out of full screen. This module will let you control the location of the gam
window after the player presses ESC.

You'll use the math module for gravity and trigonometric calculations
and random to start the satellite off with a random position and velocity.
Import pygame as you did in Chapter 13, using pg, rather than pygame, to
reduce typing.

Finish by building an RGB color table @ as you did in Chapter 13. Th
lets you type in color names, rather than RGB-value tuples, when you neec
to assign one of these colors.

Defining the Satellite Class Initialization Method

Listing 14-2 defines the Satellite class and its initialization method, which
you'll use to instantiate a satellite object in the game. Since this method
definition is long, it’s split over two listings.

mars_orbiter.py, @ class Satellite(pg.sprite.Sprite):

part 2 """Satellite object that rotates to face planet & crashes & burns."""

® def init_(self, background):

super(). init ()

self.background = background

self.image sat = pg.image.load("satellite.png").convert()
self.image crash = pg.image.load("satellite crash_40x33.png").conver
self.image = self.image_sat

self.rect = self.image.get_rect()

self.image.set_colorkey(BLACK) # sets transparent color

2906 6000

Listing 14-2: Defines the first part of the Satellite class initialization method

Define a class for a Satellite object @; if you need a refresher on obje: - -
oriented programming, read Chapter 11. Pass it the pygame Sprite class,as =
objects instantiated from the Satellite class will be sprites. As described
in Chapter 13, Sprite is a built-in class that serves as a template for making
sprites. Your new class will inherit features that your sprites will need from
this base class. These include important attributes like rect and image, which
you'll deal with shortly. ¥

Next, define the __init_ () method for the Satellite object @ and pass it 1
self, which—by convention—is a special name within a class definition that =
refers to the current object. You also need to pass the method a background =
object. The satellite’s path will be drawn on this object.

Inside the _init_() method, immediately invoke the initialization -
method for the built-in Sprite class using super ®. This will initialize the
sprite and establish the rect and image attributes it needs. With super, you
don’t need to refer to the base class (Sprite) explicitly. For more on super,
see Listing 11-5 on page 229 or visit the docs at https://docs.python.org/3
/library/functions. htmi?highlight=super#super.

N L . N

298 Chapter 14

1l

- mars_orbiter.py,
part 3

Next, assign the background to self as an object attribute @. Then use
pygame’s image.load() method to load your two satellite images—one opera-
tional and one crashed—and in the same step, run the convert() method
on them @. This converts the object into a graphic format that pygame can
use efficiently once the game loop starts. Without this step, the game may
slow noticeably as the png format is converted, on the fly, 30 or more times
per second.

You'll use only one of the satellite images at a time, depending on
whether or not the player burned up in the atmosphere, so use a generic
self.image attribute to hold the loaded and converted image ®. The
unburned satellite image will be the default image; it will be replaced with
the red crashed image if the satellite object gets too close to Mars.

Now, get the rectangle information for the image @. Remember that
pygame places the sprites on rectangular surface objects, and it needs to
know the dimensions and location of these rectangles as the game runs.

Finally, make the black parts of the satellite image invisible . The satel-
lite icon is on a field of black (see Figure 14-13), and you want the crashed-
and-burned image to plot partially over Mars, so use the BLACK constant with
the image object’s colorkey() method in order to make the icon’s background
transparent. Otherwise, you’'ll see a black box with a red satellite overlap-
ping the Red Planet. Note that if you want to type in the RGB equivalent for
black, you need to enter it as a tuple: (0, 0, 0).

Setting the Satellite’s Initial Position, Speed, Fuel, and Sound

Listing 14-3 completes the definition of the Satellite class initialization
method. The satellite object’s initial position and velocity are chosen at ran-
dom from a limited range of choices; the orientation of the remote-sensing
dish is initialized, the fuel tank topped off, and sound effects added.

©® self.x = random.randrange(315, 425)

self.y = random.randrange(70, 180)

self.dx = random.choice([-3, 3])

self.dy = 0

self.heading = 0 # initializes dish orientation

self.fuel = 100

self.mass = 1

self.distance = 0 # initializes distance between satellite & planet
0@ self.thrust = pg.mixer.Sound('thrust_audio.ogg')

@ self.thrust.set volume(0.07) # valid values are 0-1

Listing 14-3: Completes the Satellite class initialization method by initializing parameters

When the game starts, the satellite will appear at a random point near
the top of the screen. You'll choose the exact location from a range of x-
and y-values ©@.

You'll also choose the satellite’s velocity at random, but it will be slow
enough that the satellite can’t escape from orbit. Randomly set the velocity
to either —3 or 3. Negative values result in a counterclockwise orbit, and vice
versa. Use the delta=x (dx) attribute only ® and let gravity take care of dy. As

Mapping Mars with the Mars Orbiter 299

mars_orbiter.py,

part 4

300

Chapter 14

discussed in Chapter 13, pygame moves sprites around the screen using incre-
mental changes in the x-location (called delta=x or dx) and incremental
changes in the y-location (called delta-y or dy). These vector components

are calculated and added to the sprite’s current position (self.x, self.y) :
with each game loop. 3

Next, set the dy attribute to 0 ®. Later, the gravity() method will estab- :
lish an initial dy value when it accelerates the newly instantiated satellite
downscreen toward the planet.

Assign an attribute for the satellite’s heading @. The remote-sensing
dish, which will read soil moisture on the planet’s surface, should always
point toward Mars, and if you remember from Figure 14-3, this won’t occur
unless you overcome inertia. You'll use a method to actually rotate the satel-
lite, so for now, just initialize the heading attribute with o. 3

Now, top off the fuel tank with 100 units of fuel @. If you want to rela 3
this to real life, it would probably represent 100 kilograms of hydrazine,
similar to what was used in the Magellan probe that mapped Venus. _

Next, set the object’s mass to 1. This basically means you'll just use the
mass of Mars in the gravity equation, because you multiply the masses of :
two objects together. As stated earlier, the pull of the satellite on Mars is
inconsequential, so you don’t need to calculate it. The satellite’s mass attri-
bute is included for completeness and as a placeholder in case you want to
experiment with different values later. 3

The following distance attribute stores the distance between the satelli
and the body it is orbiting. The actual value will be calculated by a method
you’ll define later. [

It’s time to add sound effects. You'll initialize pygame’s sound mixerin
the main() function, but for now, name a thrust attribute for the thrusting ‘
sound effect @. Pass the mixer’s Sound class the short clip of white noise
in Ogg Vorbis format (.ogg). Finally, set the playback volume, using values
between 0 and 1 @. You may need to calibrate this to your PC. Ideally, you
want a value that every player will be able to at least hear and then fine-tu e d
with their own computer’s volume control. h

Firing Thrusters and Checking for Player Input

Listing 14-4 defines the thruster() and check_keys() methods of the Satellite
class. The first determines the actions taken if one of the satellite’s thrusters:
is fired. The second checks whether a player has interacted with the thrust-
ers by pressing an arrow key.

© def thruster(self, dx, dy):
"""Execute actions associated with firing thrusters.
® self.dx += dx
self.dy += dy
© self.fuel -= 2
® self.thrust.play()

© def check_keys(self):
"""Check if user presses arrow keys & call thruster() method.
® keys = pg.key.get pressed()

ars_orbiter. py,
rt 5

fire thrusters
@ if keys[pg.K RIGHT]:
® self.thruster(dx=0.05, dy=0)
elif keys[pg.K LEFT]:
self.thruster(dx=-0.05, dy=0)
elif keys[pg.K_UP]:
self.thruster(dx=0, dy=-0.05)
elif keys[pg.K DOWN]:
self.thruster(dx=0, dy=0.05)

Listing 14-4: Defines the thruster() and check keys() methods for the Satellite class

The thruster() method takes self, dx, and dy as arguments @. The last
two arguments, which can be positive or negative, are immediately added to
the satellite’s self.dx and self.dy velocity components ®. Next, the fuel level
is decreased by two units ©. Altering this value is one way to make the game
either harder or easier. Finish by calling the play() method on the thrust
audio attribute to make the hissing sound @. Note that, instead of returning
values, OOP methods update existing object attributes.

The check_keys() method takes self as an argument @. First you use the
pygame key module to determine whether the player has pressed a key ®. The
get_pressed() method returns a tuple of Boolean values—1 for True and o for
False—that represent the current state of each key on the keyboard. True
means a key has been pressed. You can index this tuple by using the key con-
stants. You can find a list of all the keyboard constants at https://www.pygame
.org/docs/ref/key.html.

For example, the right arrow key is K_RIGHT. If this key has been pressed @,
call the thruster() method and pass it dx and dy values . In pygame, x-values
increase toward the right of the screen, and y-values increase toward the
bottom of the screen. So, if the user presses the left arrow key, subtract
from dx; likewise, if the up arrow is pressed, decrement the dy value. The
right arrow will increase dx, and the down arrow will increase dy. Readouts
at the top of the screen will help the player relate the satellite’s movements
to the underlying dx and dy values (see Figure 14-14).

Locating the Satellite

Still in the Satellite class, Listing 14-5 defines the locate() method. This

method calculates the distance of the satellite from the planet and deter-

mines the heading for pointing the dish at the planet. You’ll use the dis-

tance attribute later when calculating the force of gravity and the eccentricity)
of the orbit. Eccentricity is a measurement of the deviation of an orbit from

a perfect circle.

©® def locate(self, planet):
"""Calculate distance & heading to planet.
® px, py = planet.x, planet.y
® dist_x = self.x - px
dist_y = self.y - py
get direction to planet to point dish
O planet_dir radians = math.atan2(dist_x, dist_y)

nwun

Mapping Mars with the Mars Orbiter 301

@ self.heading = planet_dir_radians * 180 / math.pi
@ self.heading -= 90 # sprite is traveling tail-first
@ self.distance = math.hypot(dist_x, dist y)

Listing 14-5: Defines the locate() method for the Satellite class

To locate the satellite, you need to pass the locate() method the
satellite (self) and planet objects ©. First, determine the distance between
the objects in x-y space. Get the planet’s x- and y-attributes ®; then subtract
them from the satellite’s x- and y-attributes .

Now, use these new distance variables to calculate the angle between
the satellite’s heading and the planet so you can rotate the satellite dish
toward the planet. The math module uses radians, so assign a local variable
called planet_dir_radians to hold the direction in radians and pass dist_x
and dist_y to the math.atan2() function to calculate the arc tangent @. Since
pygame uses degrees (sigh), convert the angle from radians to degrees using
the standard formula; alternatively, you could use math to do this, but some-
times it’s good to see the man behind the curtain ©. This should be a shar-
able attribute of the satellite object, so name it self.heading.

In pygame, the front of a sprite is to the east by default, which means the
satellite sprite is orbiting tail-first (see the satellite icon in Figure 14-13).
To get the dish to point toward Mars, you need to subtract 90 degrees from
the heading, because negative angles result in clockwise rotation in pygame ©.
This maneuver will use none of the player’s fuel allotment.

Finally, get the Euclidian distance between the satellite and Mars
by using the math module to calculate the hypotenuse from the x- and
y-components @. You should make this an attribute of the satellite object
since you will use it later in other functions.

In real life, there are multiple ways to keep the dish of a satellite pointed toward a planet
without expending large amounts of ‘fuel. Techniques include slowly tumbling or spin-

ning the satellite, making the dish end heavier than the opposite end, using magnelic
torque, or using internal flywheels—also known as reaction wheels or momentum
wheels. Flywheels use electric motors that can be powered by solar panels, eliminating
the need for heavy and toxic liquid propellant.

Rotating the Satellite and Drawing Its Orbit

Listing 14-6 continues the Satellite class by defining methods for rotating
the satellite dish toward the planet and drawing a path behind it. Later,

in the main() function, you'll add code that lets the player erase and restart
the path by pressing the space bar.

mars_orbiter.py, © def rotate(self):

part 6 wunpotate satellite using degrees so dish faces planet.
® self.image = pg.transform.rotate(self.image_sat, self.heading)
© self.rect = self.image.get_rect()

nnn

© def path(self):

302 Chapter 14

Update satellite’s position & draw line to trace orbital path."""
© last_center = (self.x, self.y)
O self.x += self.dx
self.y += self.dy
@ pg.draw.line(self.background, WHITE, last _center, (self.x, self.y))

Listing 14-6: Defines the rotate() and path() methods of the Satellite class

The rotate() method will use the heading attribute, which you calculate
in the locate() method, to turn the satellite dish toward Mars. Pass self to
rotate() @, which means rotate() will automatically take the name of the
satellite object as an argument when it is called later.

Now, rotate the satellite image using pygame’s transform.rotate() method @.
— Pass it the original image followed by the heading attribute; assign these to
the self.image attribute so you don’t degrade the original master image.
You'll need to transform the image with each game loop, and transforming
an image rapidly degrades it. So always keep a master image and work off a
new copy every time you do a transformation.

End the function by getting the transformed image’s rect object ©.

Next, define a method called path() and pass it self @. This will draw
a line marking the satellite’s path, and since you need two points to draw a
line, assign a variable to record the satellite’s center location as a tuple prior :
to moving it ©. Then increment the x- and y-locations with the dx and dy
attributes @. Finish by using pygame’s draw.line() method to define the line @.
This method needs a drawing object, so pass it the background attribute, fol-
lowed by the line color and the previous and current x-y location tuples.

Updating the Satellite Object

Listing 14-7 updates the satellite object and completes the class definition.
Sprite objects almost always have an update() method that is called once
per frame as the game runs. Anything that happens to the sprite, such as
movement, color changes, user interactions, and so on, is included in this
method. To keep them from becoming too cluttered, update() methods
mostly call other methods.

s_orbiter.py, © def update(self):
74 """Update satellite object during game.
self.check_keys()
self.rotate()
self.path()
self.rect.center = (self.x, self.y)
change image to fiery red if in atmosphere
if self.dx == 0 and self.dy == 0:
self.image = self.image crash
self.image.set_colorkey(BLACK)

Listing 14-7: Defines the update() method for the Satellite class

Start by defining the update() method and passing it the object, or self @.
Next, call the methods that you defined earlier. The first of these checks

Mapping Mars with the Mars Orbiter 303

mars_orbiter.py,

part 8

304

Chapter 14

for player interactions made through the keyboard @. The second rota es
the satellite object so that the dish keeps pointing toward the planet . TI
final method updates the satellite’s x-y location and draws a path behind if
so you can visualize the orbit @.

The program needs to keep track of the satellite sprite’s location as it
orbits Mars, so assign a rect.center attribute and set it to the satellite’s cur-
rent x-y location ©.

The final bit of code changes the satellite image in the event the player
crashes and burns in the atmosphere @. The top of the Martian atmosphe
is about 68 miles above its surface. For reasons I'll explain later, assume tha
an altitude value of 68—which is measured in pixels from the center of the
planet—equates to the top of the atmosphere. If the satellite dips below -
this altitude during gameplay, the main() function will set its velocity—
represented by dx and dy—to 0. Check that these values are both 0, and ifs¢
change the image to image_crash and set its background to transparent (as_
you did previously for the main satellite image). A

Defining the Planet Class Initialization Method

Listing 14-8 defines the Planet class, which you'll use to instantiate a pla
object.

class Planet(pg.sprite.Sprite):
"""planet object that rotates & projects gravity field."""

® def _init_ (self):

super(). init_ ()

self.image mars = pg.image.load("mars.png").convert()
self.image water = pg.image.load("mars_water.png").convert()
self.image _copy = pg.transform.scale(self.image_mars, (100, 100))
self.image_copy.set_colorkey(BLACK)
self.rect = self.image_copy.get rect()
self.image = self.image_copy

self.mass = 2000

self.x = 400

self.y = 320

self.rect.center = (self.x, self.y)
self.angle = math.degrees(0)
self.rotate by = math.degrees(0.01)

Listing 14-8: Begins definition of the Planet class

You are probably very familiar with the initial steps to creating the Planets
class by now. First, you name the class with a capital letter, then pass it the &
Sprite class so it will conveniently inherit features from this built-in pygame
class @. Next, you define an __init_ (), or initialization, method for your =
planet object ®. Then you call the super() initialization method, as you dw =
for the Satellite class.

Load the images as attributes and convert them to pygame’s graphic
format at the same time ©. You need both the normal Mars image and t

—

one for mapped soil moisture. You were able to use the satellite sprite at its
native size, but the Mars image is too large. Scale the image to 100 pixels x
100 pixels @ and assign the scaled image to a new attribute so repeated
transformations won’t degrade the master image.

Now, set the transformed image’s transparent color to black, as you
did earlier with the satellite image ©. Sprites in pygame are all “mounted”
on rectangular surfaces, and if you don’t make black invisible, the corners

of the planet surface may overlap and cover the white-colored orbital path
drawn by the satellite (see Figure 14-15).

Figure 14-15: Corners of Mars rect
covering orbital path

As always, get the sprite’s rect object @. There’s another transformation
to come, so copy the image attribute again and assign it the logical name of
self.image.

To apply the force of gravity, the planet needs mass, so name a mass
attribute and assign it a value of 2000 @. Earlier, you assigned the satellite a
mass of 1; this means that Mars is only 2,000 times as massive as a satellite!
That’s okay, because you aren’t working in real-world units, and the time
and distance scales differ from reality. If you scale distances so that the satel-
lite is only a few hundred pixels from Mars, you have to scale gravity as well.
Despite this, the satellite will still behave realistically with respect to gravity.

The planet’s mass value was determined through experimentation. To
scale the force of gravity, you can either change this mass value or use the
gravitational constant (G) variable later.

Set the planet object’s x and y attributes to the center point of the
screen—you'll use a screen size of 800 x 645 in the main() function—and
assign these values to the rect object’s center ©.

Finally, assign the attributes you’ll need to slowly rotate Mars about
its axis @. You'll use the same transform.rotate() method you used to turn

the satellite, so you need to create an angle attribute. Then, use a rotate_by

attribute to assign the increment—in degrees—by which this rotation angle
changes with each game loop.

Mapping Mars with the Mars Orbiter 305

mars_orbiter.py,
part 9

306 Chapter 14

Rotating the Planet

Listing 14-9 continues the Planet class by defining its rotate() method. This
method rotates the planet around its axis, making small changes with each
game loop.

O def rotate(self):
"""Rotate the planet image with each game loop.
® last center = self.rect.center
© self.image = pg.transform.rotate(self.image_copy, self.angle)
self.rect = self.image.get_rect()
® self.rect.center = last_center
@ self.angle += self.rotate_by

Listing 14-9: Defines a method to rotate the planet around its axis

The rotate() method also takes the object as an argument @. As
the square Mars image is rotating, the bounding rectangle object (rect)
remains stationary and must expand to accommodate the new configura-
tion (see Figure 14-16). This change in size can affect the center point of
the rect, so assign a last_center variable and set it to the planet’s current
center point ®. If you don’t do this, Mars will wobble around its axis as the
game runs.

New bounding rectangle

Pre-rotation
bounding rectangle

P o -

Figure 14-16: The bounding rectangle changes size to accommodate rotating images.

Next, rotate the copied image using pygame’s transform.rotate() method
and assign it to the self.image attribute ®; you need to pass the method th-~
copied image and the angle attribute. Immediately after rotating, reset the
image’s rect attribute and move its center location back to last_center in
order to mitigate any shifting of rect that occurred during rotation 0.

When the planet object is instantiated, the angle attribute will start at
0 degrees, then increase by 0.1—assigned in the rotate_by attribute—with
each frame ©.

- mars_orbiter.py,
part 10

i 5

Defining the gravity() and vpdate() Methods

Listing 14-10 completes the Planet class by defining the gravity() and update()
methods. In Chapter 13, you treated gravity as a constant applied in the
y-direction. The method applied here is slightly more sophisticated, because
it takes into account the distance between two objects.

© def gravity(self, satellite):
"""Calculate impact of gravity on satellite."""
® G = 1.0 # gravitational constant for game
© dist_x = self.x - satellite.x i
dist_y = self.y - satellite.y
distance = math.hypot(dist_x, dist y)
normalize to a unit vector]
@ dist_x /= distance |
dist_y /= distance |
apply gravity (dx & dy represent pixels/frame)
force = G * (satellite.mass * self.mass) / (math.pow(distance, 2))
satellite.dx += (dist_x * force)
satellite.dy += (dist_y * force)

@ def update(self):
"""Call the rotate method."""
self.rotate()

Listing 14-10: Defines the gravity() and update() methods of the Planet class

Define the gravity() method and pass it self and the satellite object @.
You're still in the Planet class, so self here represents Mars.

Start by naming a local variable G; an uppercase G is the universal gravita-
tional constant, also known as the constant of proportionality ®. In real life, this
is a very small, empirically derived number, which is basically a conversion
number to get all the units to work out correctly. You're not using real-world
units in the game, so set this to 1; this way, it won’t have an impact on the
gravity equation. During game development, you can tweak this constant up
or down to fine-tune the force of gravity and its effect on orbiting objects.

You need to know how far apart the two objects are, so get their distance
in the x-direction and the y-direction ®. Then, use the math module’s hypot ()
method to get the Euclidian distance. This will represent the rin the gravity
equation.

Since you're going to directly address the magnitude of the distance
between the satellite and Mars in the gravity equation, all you need from
the distance vector is direction. So, divide dist_x and dist_y by distance to
“normalize” the vector to a unit vector with a magnitude of 1 @. You are
basically dividing the length of each side of a right triangle by its hypot-
enuse. This preserves the vector’s direction, represented by the relative
differences in dist_x and dist_y, but sets its magnitude to 1. Note that if you
don’t perform this normalization step, the results will be unrealistic but
interesting (see Figure 14-17).

Mapping Mars with the Mars Orbiter 307

MODEL,
EXPERIMENT,
SIMULATE,
PLAY

Python undeniably makes programming easier than
ever fo learn.-But once you understand the basics,
what do you do next2 Maybe you just need some
inspiration for your next weekend project.

With Impractical Python Projects, you'll explore the
farthest reaches of the galaxy, the souls of poets,
the world of high finance, the trickery of spies, and
more—using modules like tkinter, matplotlib, cProfile,
Pylint, pygame, pillow, and python-docx.

Follow along and flex your problem-solving skills to:

* Help James Bond crack a high-tech safe with a
hill-climbing algorithm

* Write poems using Markov chain analysis

® Breed a race of gigantic rats with genetic algorithms

® Plan a secure‘retirement with a Monte Carlo
simulation

THE FINEST iN GEEK ENTERTAINMENT™

no starch www.nostarch.com

press

MIX

Plp‘:r from
responsible sources
FSC

weniscos FSC® C008955

“I LIE FLAT.”

This baok uses o durable binding that won't snap shut.

LOS ANGELES PUBLIC LIBRARY

AW

7244 2461 0319

COVERS
PYTHON 3

I
)

* Model the Milky Way and calculate our odds of
detecting alien civilizations

* Map Mars and learn orbital mechanics with your own
personal space probe '

And so much morel Whether you're looking to pick

up some new Python skills or just want some creative
programming exercises, you'll find endless educational
and geeky fun with Impractical Python Projects. ’

ABOUT THE AUTHOR

Lee Vaughan is a programmer, pop culture enthusiast, -*
and educator. Lee’s professional work involves the :
construction and review of computer models; the devel-*:
opment, testing, and commercialization of software; -
and the training of geoscientists and engineers. He
wrote Impractical Python Projects to help self-learners -

hone their Python skills and have fun doing it!

$29.95 (539.95 CON)

: 978-1-59327-890-8
"IS 299 i

NOHIAJ/SIOVAINVI

INIWWYHI0Yd NI JATIHS

ISBN..‘
9 781593 278908

i

